The Direct Fourier Reconstruction (DFR) implementation previously published (Part II: [Link]) works correctly. However, the polar to cartesian conversion is not very efficient because there are missing pixels in the 2D Fourier space. Modifying the source code can easily fixed this problem...
The basic implementation is not perfect because when the 2D Fourier space is filled by the 1D-FT of each sinogram row, some pixels are not filled as shown in Fig. 1 displaying the coverage of the 2D Fourier space.
![]() |
Fig.1: Fill of the 2D Fourier space. As shown in the red zoomed area (B), missing pixels (displayed in black) are never filled by the values of the 1D-FTs during the polar to cartesian conversion. |
<< Figure >>
The synopsis written in pseudo-code now becomes...
for x=0 to 2DFT_space.height
for y=0 to 2DFT_space.width
{radius,theta} = compute_polar_coordinates_from(x,y)
value = getInterpolatedPixel(radius,theta,FT_sinogram)
2DFT_space.setPixel(x,y,value)
end for
end for
The conversion of the cartesian coordinate (x,y) to polar (ρ,θ) is defined by the following formula:
ρ = √(x2+y2) with ρ ∈ [0; +maxRadius]Finally, we have to check that the polar coordinates (ρ,θ) are comprised in the range [0;width[ and [0,height[ of the sinogram, respectively.
θ = atan2(y,x) with θ ∈ ]-π; π]
The corresponding lines of code are ...
var theta = -Math.atan2(yc,xc) * DEG;
var rad = Math.sqrt(xc * xc + yc * yc);
if (theta < 0 ) {
rad = -rad;
theta=Math.min(theta+180.0,180.0);
}
Finally, the new JavaScript implementation is ...
+++ IJ JavaScript snippet: FourierRec.js +++
+++ End of IJ JavaScript snippet +++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Direct Fourier Reconstruction | |
// Jean-Christophe Taveau | |
// http://crazybiocomputing.blogspot.com | |
// 1- Get FT(sinogram) and create the final stack | |
var FT_sino = IJ.getImage(); | |
var FT_sino_p = FT_sino.getProcessor(); | |
var w=FT_sino.getWidth(); | |
var nbProj= FT_sino.getHeight(); | |
var step=180/nbProj; | |
var orgx = w/2.0; | |
var orgy = orgx; | |
// Global variable | |
var DEG = 180.0 / Math.PI; | |
// Create output 2D reconstruction | |
var rec = IJ.createImage("Rec2D DirectFourier", "32-bit Black", w, w, 1); | |
var rec_p = rec.getProcessor(); | |
// | |
// M A I N | |
// | |
IJ.log("Fill 2D Fourier Space with 1D-FT central slice"); | |
// 4- Cartesian -> Polar: nearest scheme interpolation | |
for (var y=0;y<rec_p.getHeight();y++) { | |
var yc = y-orgy; | |
for (var x=0;x<rec_p.getWidth();x++) { | |
var xc = x-orgx; | |
// Get polar coordinates (theta and radius) | |
var theta = -Math.atan2(yc,xc) * DEG; | |
var rad = Math.sqrt(xc * xc + yc * yc); | |
if (theta <0.0) { | |
rad = -rad; | |
theta=Math.min(theta+180.0,180.0); | |
} | |
sino_x = rad + orgx; | |
sino_y = theta; | |
if (rad < w/2.0) { | |
pix = interpolate(sino_x,sino_y,FT_sino_p); | |
rec_p.putPixelValue(x,y,pix); | |
} | |
} | |
} | |
IJ.log("Inverse 2D Fourier Transform"); | |
IJ.run(rec, "Swap Quadrants", ""); | |
var fht2d = new FHT(rec.getProcessor(),true ); | |
fht2d.inverseTransform(); | |
rec.setProcessor(fht2d); | |
IJ.run(rec, "Swap Quadrants", ""); | |
rec.show(); | |
// F U N C T I O N S | |
function interpolate(x,y,iproc) { | |
var ix = Math.round(x); | |
var iy = Math.round(y); | |
return iproc.getPixelValue(ix,iy); | |
} | |
Thanks to this new implementation, it is now possible to improve the type of interpolation scheme.
To be continued...
<< Previous: Zero padding
Next:Better interpolation scheme >>
No comments:
Post a Comment