There are several variants of the Algebraic Reconstruction Techniques (ART): One of them is Multiplicative ART (MART) based on the same principle but the error is calculated as a ratio.
1- Algorithm
In MART, the algorithm becomes.
for each iteration
for each row of sinogram
p ← row;
a ← calc_projection(rec, angle);
err ← (p / a)λ;
rec ← rec * err;
end for
end for
2- Implementation
Nothing special about the implementation, this is exactly the same script as ART_simple.js but step #4 replaced by ...
// 4- Compute the error as a ratio
ic.run("Divide",proj,a);
IJ.run(proj, "Macro...", "code=[v=pow(v,"+relax+");]");
And the reconstruction update is replaced by a multiplication:
ic.run("Multiply",rec,proj);
Moreover, to avoid a division by zero at the first iteration, the 2D reconstruction image is initialized with the mean value of the sinogram.
var stats = imp.getStatistics();
var avg=stats.mean;
rec.getProcessor().setValue(avg);
rec.getProcessor().fill();
Of course, you can add the constraints as described in a previous post [Link].
+++ IJ JavaScript snippet: MART_simple.js +++
+++ End of IJ snippet +++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// MART: Multiplicative ART | |
// Jean-Christophe Taveau | |
// 5 nov 2012 | |
// http://crazybiocomputing.blogspot.com | |
// ART Parameters | |
var nbCycles=5; | |
var relax=0.33; | |
// 1- Get sinogram information | |
var imp = IJ.getImage(); | |
var w=imp.getWidth(); | |
var nbProj=imp.getHeight(); | |
var step=180/nbProj; | |
// Create output and temporary images/stack | |
var rec = IJ.createImage("Rec2D", "32-bit Black", w, w, 1); | |
var recStack = IJ.createImage("Rec2D_Cycles", "32-bit Black", w, w, nbCycles); | |
var a = IJ.createImage("tmp", "32-bit Black", w, 1, 1); | |
var ic = new ImageCalculator(); | |
var stats = imp.getStatistics(); | |
var avg=stats.mean; | |
rec.getProcessor().setValue(avg); | |
rec.getProcessor().fill(); | |
// M a i n l o o p | |
// Comment out the following lines to see the ART in action | |
// rec.show(); | |
// recStack.show(); | |
for (var i=0;i<nbCycles;i++) | |
{ | |
for (var j=0;j<nbProj;j++) | |
{ | |
// 2- Compute projection from temporary 2D-rec | |
calcProj(rec,step*j); | |
// 3- Extract a 1D-projection (one row of sinogram) | |
imp.setRoi(0,j,imp.getWidth(), 1); | |
var proj = imp.duplicate(); | |
// 4- Compute the error between sinogram and calculated projections | |
ic.run("Divide",proj,a); | |
IJ.run(proj, "Macro...", "code=[v=pow(v,"+relax+");]"); | |
// 5- Create the backprojected ray from this err pixel and add it to rec; | |
IJ.run(proj, "Size...", "width="+w+" height="+w+" average interpolation=None"); | |
IJ.run(proj, "Rotate... ", "angle="+(-j * step)+" grid=1 interpolation=Bilinear fill"); | |
ic.run("Multiply",rec,proj); | |
} | |
recStack.setSlice(i+1); | |
recStack.setProcessor(rec.getProcessor().duplicate()); | |
} | |
rec.show(); | |
recStack.show(); | |
// F U N C T I O N S | |
function calcProj(img, rotangle) | |
{ | |
var tmp = img.duplicate(); | |
tmp.getProcessor().setBackgroundValue(0.0); | |
tmp.getProcessor().rotate(rotangle); | |
tmp.setRoi(0,0,tmp.getWidth(), tmp.getHeight()); | |
var plot = new ProfilePlot(tmp); | |
var data = plot.getProfile(); | |
for (var x in data) | |
a.getProcessor().putPixelValue(x,0,data[x]); | |
tmp.close(); | |
} | |
3- Some results
From this sinogram [Link], the MART script yields the 2D reconstruction of Fig. 1.
![]() |
Fig. 1: Five cycles of MART with a relaxation factor of 0.33. |
No comments:
Post a Comment