Wednesday, November 14, 2012

Learning Tomography: Multiplicative ART




There are several variants of the Algebraic Reconstruction Techniques (ART): One of them is Multiplicative ART (MART) based on the same principle but the error is calculated as a ratio.

1- Algorithm

In MART, the algorithm becomes.

for each iteration
  for each row of sinogram
    p ← row;
    a ← calc_projection(rec, angle);
    err ← (p / a)λ;
    rec  ← rec * err;
  end for
end for

2- Implementation

Nothing special about the implementation, this is exactly the same script as ART_simple.js but step #4 replaced by ...

    // 4- Compute the error as a ratio
  ic.run("Divide",proj,a); 
  IJ.run(proj, "Macro...", "code=[v=pow(v,"+relax+");]");


And the reconstruction update is replaced by a multiplication:

  ic.run("Multiply",rec,proj);

Moreover, to avoid a division by zero at the first iteration, the 2D reconstruction image is initialized with the mean value of the sinogram.

  var stats = imp.getStatistics();
  var avg=stats.mean;
  rec.getProcessor().setValue(avg);
  rec.getProcessor().fill();


Of course, you can add the constraints as described in a previous post [Link].

+++ IJ JavaScript snippet: MART_simple.js +++
// MART: Multiplicative ART
// Jean-Christophe Taveau
// 5 nov 2012
// http://crazybiocomputing.blogspot.com
// ART Parameters
var nbCycles=5;
var relax=0.33;
// 1- Get sinogram information
var imp = IJ.getImage();
var w=imp.getWidth();
var nbProj=imp.getHeight();
var step=180/nbProj;
// Create output and temporary images/stack
var rec = IJ.createImage("Rec2D", "32-bit Black", w, w, 1);
var recStack = IJ.createImage("Rec2D_Cycles", "32-bit Black", w, w, nbCycles);
var a = IJ.createImage("tmp", "32-bit Black", w, 1, 1);
var ic = new ImageCalculator();
var stats = imp.getStatistics();
var avg=stats.mean;
rec.getProcessor().setValue(avg);
rec.getProcessor().fill();
// M a i n l o o p
// Comment out the following lines to see the ART in action
// rec.show();
// recStack.show();
for (var i=0;i<nbCycles;i++)
{
for (var j=0;j<nbProj;j++)
{
// 2- Compute projection from temporary 2D-rec
calcProj(rec,step*j);
// 3- Extract a 1D-projection (one row of sinogram)
imp.setRoi(0,j,imp.getWidth(), 1);
var proj = imp.duplicate();
// 4- Compute the error between sinogram and calculated projections
ic.run("Divide",proj,a);
IJ.run(proj, "Macro...", "code=[v=pow(v,"+relax+");]");
// 5- Create the backprojected ray from this err pixel and add it to rec;
IJ.run(proj, "Size...", "width="+w+" height="+w+" average interpolation=None");
IJ.run(proj, "Rotate... ", "angle="+(-j * step)+" grid=1 interpolation=Bilinear fill");
ic.run("Multiply",rec,proj);
}
recStack.setSlice(i+1);
recStack.setProcessor(rec.getProcessor().duplicate());
}
rec.show();
recStack.show();
// F U N C T I O N S
function calcProj(img, rotangle)
{
var tmp = img.duplicate();
tmp.getProcessor().setBackgroundValue(0.0);
tmp.getProcessor().rotate(rotangle);
tmp.setRoi(0,0,tmp.getWidth(), tmp.getHeight());
var plot = new ProfilePlot(tmp);
var data = plot.getProfile();
for (var x in data)
a.getProcessor().putPixelValue(x,0,data[x]);
tmp.close();
}
view raw MART_simple.js hosted with ❤ by GitHub
+++ End of IJ snippet +++


3- Some results

From this sinogram [Link], the MART script yields the 2D reconstruction of Fig. 1.

Fig. 1: Five cycles of MART with a relaxation factor of 0.33.


Other crazybiocomputing posts

Further readings are available in ...
  • Learning Tomography Series  [Link]
  • Image Processing TOC [Link]

No comments:

Post a Comment