After introducing the principle of ART according to Kaczmarz method in the last post [Link], it's time to implement it in ImageJ with JavaScript language...
1- Implementation
In ImageJ, the ART implementation is really simple as the projection computation is done by the Plot Profile function. The algorithm is schematically:
for each iteration
for each row of sinogram
p ← row;
a ← calc_projection(rec, angle);
err ← (p - a)* λ;
rec ← rec + err;
end for
end for
There is something new compared to the previous post: the relaxation factor λ (lambda) whose value is comprised between 0.0 and 1.0. This parameter allows to modify the convergence speed. A small value yields a more precise solution with a slow convergence. However, a value close to 1.0 allows a higher speed at the expense of quality
+++ IJ JavaScript snippet: ART_simple.js +++
+++ End of JavaScript snippet +++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// ART: Algebraic Reconstruction Technique | |
// Jean-Christophe Taveau | |
// 5 nov 2012 | |
// http://crazybiocomputing.blogspot.com | |
// ART Parameters | |
var nbCycles=5; | |
var relax=0.33; | |
// 1- Get sinogram information | |
var imp = IJ.getImage(); | |
var w=imp.getWidth(); | |
var nbProj=imp.getHeight(); | |
var step=180/nbProj; | |
// Create output and temporary images/stack | |
var rec = IJ.createImage("Rec2D", "32-bit Black", w, w, 1); | |
var recStack = IJ.createImage("Rec2D_Cycles", "32-bit Black", w, w, nbCycles); | |
var a = IJ.createImage("tmp", "32-bit Black", w, 1, 1); | |
var ic = new ImageCalculator(); | |
// M a i n l o o p | |
// Comment out the following lines to see the ART in action | |
// rec.show(); | |
// recStack.show(); | |
for (var i=0;i<nbCycles;i++) | |
{ | |
for (var j=0;j<nbProj;j++) | |
{ | |
// 2- Compute projection from temporary 2D-rec | |
calcProj(rec,step*j); | |
// 3- Extract a 1D-projection (one row of sinogram) | |
imp.setRoi(0,j,imp.getWidth(), 1); | |
var proj = imp.duplicate(); | |
// 4- Compute the error between sinogram and calculated projections | |
ic.run("Subtract",proj,a); | |
IJ.run(proj, "Multiply...", "value="+relax); | |
// 5- Create the backprojected ray from this err pixel and add it to rec; | |
IJ.run(proj, "Size...", "width="+w+" height="+w+" average interpolation=None"); | |
IJ.run(proj, "Rotate... ", "angle="+(-j * step)+" grid=1 interpolation=Bilinear fill"); | |
ic.run("Add",rec,proj); | |
} | |
recStack.setSlice(i+1); | |
recStack.setProcessor(rec.getProcessor().duplicate()); | |
} | |
rec.show(); | |
recStack.show(); | |
// F U N C T I O N S | |
function calcProj(img, rotangle) | |
{ | |
var tmp = img.duplicate(); | |
tmp.getProcessor().setBackgroundValue(0.0); | |
tmp.getProcessor().rotate(rotangle); | |
tmp.setRoi(0,0,tmp.getWidth(), tmp.getHeight()); | |
var plot = new ProfilePlot(tmp); | |
var data = plot.getProfile(); | |
for (var x in data) | |
a.getProcessor().putPixelValue(x,0,data[x]); | |
tmp.close(); | |
} | |
2-Results
To try the previous script, I use the sinogram of Fig. 1 that you can download [Link] as a TIFF 32-bit image without any compression.
![]() |
Fig.1: Sinogram used to try the ART script. |
![]() |
Fig.2: Resulting 2D ART reconstruction |
Note: If you want to see this script in action uncomment line #27 // rec.show();
It's also possible to see the result of the reconstruction after each iteration since they are stored in the stack 'Rec2D_Cycles' as shown in Fig.3.
![]() | ||
Fig.3: Results of the reconstruction along the five cycles. |
Playing with ART parameters
By default, the ART is calculated for 5 cycles and a relaxation factor of 0.33. However, you can easily modify the iterations number (line #6: var nbCycles=5;) and the relaxation factor (line #7: var relax=0.33;)
No comments:
Post a Comment